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Overview

Due to limitations in directly assimilating microwave
cloudy observations in the rain-bands of hurricanes, a
new technique named Bayesian Monte Carlo
Integration (BMCI) is introduced.

The BMCI technique is used to retrieve T, q, wind
speed and several other parameters from microwave
radiances.
These retrievals can be either directly used by
forecasters to evaluate the structure of hurricanes or
be assimilated into NWP models.
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Limitations of direct assimilation of cloudy radiances

The relation between the observations (O) and the forward operator (H)
can be expressed as: O = H(~x , ~pb, ~ps) + ε
~x state vector, ~pb parameters such as shape and size distribution of
hydrometers, ~ps indicates the scattering parameters (e.g., phase function)

Non-linearity in the forward model: ~x is the mean value of the model
variables within grid-box and because H is a non-linear: H(~x) 6= H(~̄x).
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hydrometers, ~ps indicates the scattering parameters (e.g., phase function)

Non-linearity in the forward model: ~x is the mean value of the model
variables within grid-box snf because H is a non-linear: H(~x) 6= H(~̄x).

Inaccuracy in the first-guess: the models do not provide a close first
guess for cloud parameters or clouds are often displaced.

Lack of required RT inputs: ~ps are neither provided by the model nor
fully measurable in real world thus are estimated from limited in-situ
and aircraft measurements.

Simplified RT models: Operational RT models that use a simplified RT
framework, such as spherical hydrometeors, which is not appropriate
at higher microwave frequencies where ice scattering is important.

Assuming Gaussian Errors: DA systems assume Gaussian error
statistics, examined using the departures, but in the case of cloudy
radiances the departures are likely to be non-Gaussian.
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The BMCI technique

The BMCI technique can be summarized in three steps:

generation of a retrieval database of atmospheric state and cloud
variables using a-priori information. The database should also
include extreme cases as the extrapolation is not allowed.

the atmospheric state and cloud variables are fed into the RT
model to generate the synthetic observations. In addition to the
state variables such as temperature, water vapor, and cloud pro-
files, cloud microphysics and parameterization such as particles’
shape and size distribution are also utilized as input.

real measurements along with the generated database are given
to the retrieval package, then the retrieval package will select
the cases which are close to the real measurements and integrate
them according to the Bayes’ theorem to give the estimate of
the mean and uncertainty of the state and cloud variables.
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BMCI technique
K. F. Evans et al.: Ice cloud retrieval algorithm 2281

Microphysics pdfs:
ice particle p(T,IWC,Dme,disp)

liquid cloud p(T,IWC,LWC,Dme)
relative humidity p(RH;T,IWC)

Cumulative Distribution/EOF Generation Process

94 GHz scattering tables
Interpolate profiles to T/RH levels 

and hydrometeor layers

Sort T, RH, ice IWC,Dme,disp, liquid LWC,Dme
for each level/layer to make CDFs

Calculate Gaussian rank covariance matrix 
for columns with IWP>threshold

and make EOFs from covariance matrix

Ice Cloud and Humidity Retrieval

CDF/EOF file

Observation file

Scattering tables
k-distribution files

Retrieved quantities
and error bars

Monte Carlo Integration to retrieve
mean and std. dev. over posterior pdf

for each retrieved quantity

Too few
database cases 

with χ2 < threshold

no

yes

Retrieval
Database

CDFs for 7 variables at all levels/layers
and eigenvalues & EOFs

               Make retrieval database
For each case:
1) Generate T/RH/hydrometeor profiles from
    Gaussian random deviates using EOFs/CDFs.
2) Calculate quantities to retrieve from profiles.
3) Perform radiative transfer to simulate instrument
    brightness temperatures and radar reflectivity.

CloudSat files:
profiles of reflectivity,
lidar cloud fraction,

and ECMWF T & RH

Make table of ice/melting microphysics (IWC,Dme,disp,atten)
mean & covariance for each temperature and radar reflectivity cell

Simulate radar reflectivity below threshold in
lidar cloudy ice layers and make cloud mask

  Generate stochastic hydrometeor profiles for each radar profile:
1) Use reflectivity and temperature profiles with table to generate
   ice/melting IWC, Dme, disp & radar attenuation.
2) Use IWC and T to generate liquid cloud LWC and Dme.
3) Use T and IWC to adjust RH if IWC>threshold.

  Optimization procedure:
1) Levenberg-Marquardt minimization of cost function
    to find most probable state for retrieved quantities.
2) Sample optimal estimation Gaussian posterior pdf
    for error bars. 

Fig. 1.Flowchart of the Bayesian ice cloud profile retrieval algorithm. Abbreviations used: “T ” for temperature, “RH” for relative humidity,
“IWC” for ice water content, “IWP” for ice water path, “LWC” for cloud liquid water content, “Dme” for mean IWC weighted equivalent
sphere diameter, “disp” forDe dispersion (a measure of the size distribution width), “atten” for radar attenuation, “CDF” for cumulative
distribution function, “EOF” for empirical orthogonal function, and “pdf” for probability density function.

Tables that specify the complete scattering information for
randomly oriented particles at the 94 GHz CloudSat radar
frequency are used to relate the microphysical parameters to
radar reflectivity. These tables specify the scattering prop-
erties as a function ofDme, De dispersion, temperature,
and particle shape. There are scattering tables for the ice
particles, the melting/melted ice particles, and cloud liquid
droplets. See AppendixB for a description of the particle
shapes used and how these scattering tables are generated.

3.2 Generation of the ice microphysics table

The radar reflectivity and ice/melting particle microphysi-
cal statistics are combined by generating a two-dimensional
lookup table in reflectivity and temperature (e.g., increments
of 0.5 dBZ and 2.0 K, except 0.4 K in the melting zone). For
each reflectivity/temperature cell of the table, the mean vec-
tor and covariance matrix of ln (IWC), ln(Dme), De disper-
sion, and ln(A) (whereA is the ice/melting particle radar
attenuation coefficient in dB km−1) are calculated. This table
is made with Monte Carlo sampling of the Gaussian distribu-

tion ofT , ln (IWC), ln (Dme), De dispersion, random ice par-
ticle shape mixing fractions, and the appropriate scattering
table (depending onT < 273 K orT > 273 K). The eigenval-
ues and eigenvectors are calculated for the 4× 4 covariance
matrix in each reflectivity/temperature cell to be used later
with the mean vector to stochastically simulate IWC,Dme,
De dispersion, and radar attenuation consistent with the re-
flectivity, temperature, and the ice microphysical pdf.

3.3 Simulation of radar reflectivity below threshold

Visual inspection shows that a CloudSat reflectivity threshold
of −26 dBZ for 500-m-thick layers is required to nearly elim-
inate spurious cloud detections due to receiver noise. This
threshold needs to be higher than the nominal CloudSat sen-
sitivity of −30 dBZ, because the probability distribution of
the receiver noise power has considerable width. Substantial
amounts of ice cloud in the tropics have radar reflectivity be-
low −26 dBZ. A procedure is described in AppendixC to
simulate radar reflectivity for hydrometeor layers that are be-
low the radar threshold, but are known to be cloudy from the

www.atmos-meas-tech.net/5/2277/2012/ Atmos. Meas. Tech., 5, 2277–2306, 2012

Evans et al., 2012
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Retrieval Database628 B. Rydberg et al.: Non-Gaussian Bayesian retrieval of tropical upper tropospheric cloud ice and water vapour

18 B. Rydberg et al.: Non-Gaussian Bayesian retrieval

Fig. 3. Upper panel: Radiance distribution of simulated Odin-SMR
measurements, with measurement noise added. Lower panel: Radi-
ance distribution of real Odin-SMR measurements.
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the information content for the retrievals of concern and only
two frequencies are therefore considered here. The two fre-
quencies are 501.2 and 544.4 GHz.

5.1 Radiance comparison

A basic test is that the distribution of generated radiances re-
sembles that of the measured radiances. If the radiance dis-
tributions for the database and the real Odin measurements
differ significantly, one or several steps of the simulations
have been handled incorrectly and the database can not be
applied for retrievals. This retrieval uses data from only two
frequency channels and radiances can be displayed as 2-D
distributions (501 vs. 544 GHz, Fig.3). The upper right re-
gion of the figure panels corresponds to states which con-
tain no or very thin clouds, while the lower left region corre-
sponds to states that are greatly influenced by cloud scatter-
ing.

The agreement between the two distributions in Fig.3
must be judged as highly satisfactorily. The simulated dis-
tribution is in general somewhat broader, which is an ad-
vantage compared to an opposite tendency as discussed in

Sect.2. This is particularly true for the part of the distribu-
tion corresponding to a strong impact of clouds and a possi-
ble contributing factor to the broader simulated distribution
is diurnal variations in tropical deep convection. Such diur-
nal variations are well known (Liu and Zipser, 2008) and as
CloudSat performs its measurements at local times around
01:40 and 13:40 while Odin-SMR observes around 06:15
and 18:15 some differences in obtained brightness temper-
atures are expected. Diurnal differences in CloudSat and
Odin-SMR measurements are being examined and will be
presented separately.

The measurements show a higher variation in the 544 GHz
channel for brightness temperatures around 210 K. This can
be the result of an under-representation of very dry and very
humid situations at altitudes around 14 km, but is more likely
an effect of that simulated noise does not totally capture the
behaviour of the more unstable performance of this receiver
chain for level 1b v6 data (Ekstr̈om et al., 2007). The other-
wise good agreement for the clear sky domain of the radiance
distributions (upper right corner) indicates that the imposed
variation for temperature and humidity in the database mim-
ics real conditions satisfactorily.

The good agreement between the distributions in Fig.3 is
not proof that everything is handled correctly. There could
be counteracting issues and incorrect values for less influ-
ential parameters can not be resolved in this manner. How-
ever, there is no obvious way to strictly validate the retrieval
database. For example, if any better data were available they
should be included in the retrieval database.

5.2 Retrieval setup and characterisation

The final retrieval setup was determined by inverting simu-
lated measurements. The test retrievals were performed by
dividing the database into a smaller retrieval database and a
test part, each consisting of∼200 000 cases.

Obvious elements of the measurement vectory are the two
measured brightness temperatures, at 501 and 544 GHz. The
standard deviation for the noise at 501 GHz was set to 2 K,
while for 544 GHz it was assumed to vary where 3.5/2.5 K
were selected for shortest/longest integration time (Ekstr̈om
et al., 2007). The geometric tangent altitude,zt , of Odin-
SMR spectra has been estimated to have an uncertainty fol-
lowing a Gaussian distribution with a standard deviation of
about 200 m. This knowledge was treated as measurement
information andzt was included iny. The alternative would
be to divide the data into ranges of tangent altitudes and
split up the retrieval database in the same manner. However,
the inclusion ofzt in y is directly in line with the selected
Bayesian retrieval methodology by using existing informa-
tion in an optimal manner and is thus to prefer.

Odin-SMR data do not provide independent information
on humidity and temperature. Retrieval tests showed also
some improvements for the humidity retrieval when exter-
nal temperature information was added to (y) and this option

Atmos. Meas. Tech., 2, 621–637, 2009 www.atmos-meas-tech.net/2/621/2009/
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The BMCI technique

ppost(~x |~y) =
pf (~y |~x)pp(~x)∫
pf (~y |~x)pp(~x)d ~x ′

=> Posterior =
Likelihood × Prior

Marginal Likelihood

The retrieved values for atmospheric or cloud state (x̂) can be computed
by integrating over the posterior pdf:

x̂ =

∫
~xppost(~x |~y)dx

x̂ =

∑
i xipf (~y |~xi )∑
i pf (~y |~xi )

The variance (error) of the posterior pdf is calculated as:

σ2x =

∫
(x − x̂)2ppost(~x |~y)dx
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The BMCI technique

The conditional pdf can be defined using the probability density of the
measured vectors for any given atmospheric state (j channel number):

P(~y |~x) =
m∏
j=1

1√
2πσ2j

exp

(
−

[~yj − Hj(~x)]2

2σ2j

)

σ is the noise in the measurements and x̂ now can be calculated as:

x̂ =

∑
i ~xi exp (−1

2χ
2)∑

i exp (−1
2χ

2)

χ2 =
M∑
j=1

[~yj − Hj(~x)]2

σ2j
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Improvements to the BMCI Retrievals

We have made a significant progress on enhancing the BMCI retrieval
system and adding new functionalities to the code. Some of the major
enhancements to the code are as follows:

Adding temperature profile retrieval capability as well as the ocean
skin temperature and near surface wind speed

Computing ice particle scattering properties at new frequencies and
generating new scattering tables

Implementing the FASTEM microwave ocean surface emissivity
model, both forward and adjoint, in the BMCI code

Modifying the original CloudSat reflectivity profile based CDF/EOF
program to also use GPM Dual-frequency Precipitation Radar (DPR)
reflectivity profiles
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Improvments to the BMCI Retrievals

Analyzing in situ warm cloud and rain microphysical data from the
Hurricane Research Division (HRD) and generating stochastic profiles
of warm liquid cloud profiles

Adding ERA-Interim profiles of stratospheric temperature and water
vapor matched to CloudSat times and locations to complement the
CloudSat ECMWF-AUX profiles (which only reach 24 km).

Modifying the CDF-EOF algorithm to allow for clear layers using a
hydrometeor masking procedure for ice, rain, and liquid cloud

Modifying the 1D Bayesian retrieval program to input the new
CDF-EOF a priori file and generate consistent profiles of temperature,
relative humidity, and ice particle, raindrop, and cloud droplet size
distribution parameters to use in the Bayesian profile retrievals.
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Beam filling
Beam filling was calculated as the difference between the brightness
temperatures weighted according to an elliptical Gaussian beam pattern and
Tbs calculated using the average profiles. The profiles were generated with
5km resolution using stochastic statistics derived from GPM DPR and central
profiles IWP and rain rate.
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Beam filling - GMI instrument
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Selected Hurricanes

Hurricane Sandy CloudSat
overpassed it on October 27, 2012

Hurricane Iselle CloudSat overpassed
the hurricane on August 4, 2014

Hurricane Amanda CloudSat
overpassed Hurricane Amanda on
May 25, 2014

Hurricane Joaquin In an early stage
of the formation of Hurricane
Joaquin, on September 29, 2015,
CloudSat passed over the center of
the hurricane in the Caribbean.

Image credit:
cloudsat.atmos.colostate.edu
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Collocating Satellite and TCVital
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BMCI Retrievals
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BMCI Retrievals
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BMCI Retrievals
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Top: SkinTemp (left), IWP (right), Bottom: Rain WP (left), Surface Wind Speed (right)
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Correlated observation errors
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Data Assimilation Results - Intensity
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Data Assimilation Results - Track

ATMSNoGMI C360C
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Data Assimilation Results - Track and Intensity Error

BmciATMStNoGMI C360C
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Data Assimilation Results - Track and Intensity Error
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Conclusions

Conventional data assimilation schemes cannot properly
assimilate satellite radiances in the rainband of tropical cyclones
due to inaccuracy in RT scattering parameters as well as
inaccuracy in the first guess provided by NWP models

A new technique is proposed that does not depend on the
minimization of the cost function.

Preliminary results from BMCI technique are encouraging but
require extensive validation, though validation itself is challenging

These retrieved profiles are valuable for both analyzing the
structure of the hurricanes as well as to provide more accurate
initial conditions for the NWP models
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your attention!
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